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Abstract
Deep neural networks (DNNs) are highly vulnerable to adversarial attacks. Ideally, a robust model
should perform well on both perturbed training data and unseen perturbed test data. While fitting
perturbed training data is relatively easy, generalizing to perturbed test data remains a significant
challenge. This motivates the study of generalization guarantees from a learning theory perspective.
This paper focuses on adversarial Rademacher complexity (ARC), first introduced by Yin et al.
(2018) and Khim and Loh (2018). Their work primarily addressed linear functions and highlighted
the open question of how to bound ARC for neural networks. Since then, several attempts have been
made, with the latest results applying ARC only to two-layer neural networks. The main challenge
arises from the dynamic nature and unknown closed-form solution of adversarial examples. In this
paper, we resolve this issue and provide the first bound on ARC for deep neural networks. Our
bound is qualitatively comparable to Rademacher complexity bounds in similar settings. The key
ingredient is a new concept we introduce, termed intermediate adversarial examples, along with a
framework for calculating the covering number that is compatible with them. Finally, we present
experiments to analyze poor robust generalization, demonstrating that the weight norm is a crucial
factor influencing the robust generalization gap.
Keywords: Rademacher Complexity, Adversarial Robustness, Generalization Bounds, Neural
Networks

1. Introduction

Deep neural networks (DNNs) (Krizhevsky et al., 2012; Hochreiter and Schmidhuber, 1997) have
achieved remarkable success in various machine learning tasks, including computer vision (CV) and
natural language processing (NLP). However, they have been shown to be vulnerable to adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014). More specifically, a well-trained model can
perform poorly on slightly perturbed data samples. Incorporating perturbed samples into the training
dataset can improve robustness in practice, but it does not always lead to satisfactory performance.
One major issue arises from generalization: while training a model to fit perturbed training samples
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is relatively easy, such a model often fails to generalize well to adversarial examples in the test set.
For instance, when applying ResNet to CIFAR-10, adversarial training can achieve nearly 100%
robust accuracy on the training set, yet only 47% robust accuracy on the test set (Madry et al., 2017).
Recent works (Gowal et al., 2020; Rebuffi et al., 2021) have mitigated the overfitting issue, but it still
has a 20% robust generalization gap between robust test accuracy (approximately 60%) and robust
training accuracy (around 80%). Therefore, it is interesting to provide a theoretical understanding of
adversarially robust generalization. This paper focuses on Rademacher complexity.

In classical learning theory, the generalization gap can be bounded in terms of Rademacher
complexity with high probability. Rademacher complexity is defined as

RS(H) = Eσ
1

n

[
sup
h∈H

n∑
i=1

σih(xi, yi)

]
, (1)

where S = {xi, yi}i=1,··· ,n is the sample dataset with n samples,H is the hypothesis function class,
and σi are i.i.d. Rademacher random variables, i.e., σi takes values 1 or −1 with equal probability.
Techniques for deriving upper bounds on the Rademacher complexity of deep neural networks have
been extensively studied, including layer-peeling (Neyshabur et al., 2015; Golowich et al., 2018) and
covering number arguments (Bartlett et al., 2017). For more details, see Section 2.

Khim and Loh (2018) and Yin et al. (2018) concurrently extended Rademacher complexity to
adversarial settings. They demonstrated that the robust generalization gap can be bounded by the
Rademacher complexity of the adversarial loss, defined as h̃(xi, yi) = maxx′i∈B(xi) h(x′i, yi), where
B(x) is a norm ball around sample x, and H̃ represents the hypothesis class of adversarial losses.
This specific form of Rademacher complexity is referred to as adversarial Rademacher complexity.
Their primary contribution was establishing bounds for linear function classes.

For neural networks, it may seem straightforward to extend methods for standard losses to
adversarial losses. However, Khim and Loh (2018); Yin et al. (2018) both pointed out that providing
upper bounds in adversarial settings is significantly more challenging due to the presence of the
max operator in adversarial loss. As a result, they relied on surrogate losses, leaving the following
question for future work:

How can the adversarial Rademacher complexity of deep neural networks be bounded?

Since 2018, several attempts have been made to tackle this problem. Awasthi et al. (2020) attempted
to extend the bounds on adversarial Rademacher complexity from linear functions to two-layer
neural networks. Gao and Wang (2021) proposed a more meaningful surrogate loss: the FGSM loss.
Broadly, existing attempts to tackle this problem can be categorized into two main approaches.

Type 1: Adversarial Loss in Shallow Networks. The first approach focuses on obtaining closed-
form solutions for the optimal adversarial examples x∗i and analyzing the adversarial loss, given
by maxx′ h(x′, y) = h(x∗i , y). Khim and Loh (2018); Yin et al. (2018) introduced adversarial
Rademacher complexity and provided bounds for linear functions using this method. Awasthi et al.
(2020) extended this analysis to two-layer neural networks, deriving bounds in this setting. However,
in deeper networks, obtaining closed-form solutions becomes intractable, making it unclear how to
extend this approach to multi-layer architectures and derive generalization bounds in deep neural
networks.
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Table 1: Comparison of our work with the two types of attempts on bounding Adversarial Rademacher
complexity: Type 1: Adversarial Loss in Shallow Networks (Yin et al., 2018; Khim and Loh, 2018;
Awasthi et al., 2020). Type 2: Surrogate Loss in Deep Networks (Yin et al., 2018; Khim and Loh,
2018; Gao and Wang, 2021). Our work distinguishes itself by providing the first bound for the
Adversarial Rademacher Complexity of DNNs.

Loss Networks Techniques Limitation

Type 1 Adversarial Loss ≤ Two-Layer Optimal Attack Cannot be applied to DNNs
Type 2 Surrogate Loss Multi-Layer Change Definition Cannot bound the robust generalization gap
Ours Adversarial Loss Multi-Layer Lemma 1 & 2 -

Type 2: Surrogate Loss in Deep Networks. This approach uses a surrogate loss ĥ(x, y) ≈
h̃(x, y) = maxx′ h(x′, y) to bypass the main difficulty posed by the max operator, where the surro-
gate loss does not explicitly contain a max term. Examples of ĥ(x, y) include tree-transformation
loss (Khim and Loh, 2018), SDP relaxation loss (Yin et al., 2018), and FGSM loss (Gao and Wang,
2021). However, this approach provides upper bounds for the Rademacher complexity of the surro-
gate loss rather than the adversarial loss, and thus cannot bound the robust generalization gap. For a
more detailed discussion, see Appendix B.2.

In summary, these two types of attempts aim to eliminate the max operator using different
approaches. The methods and their limitations are summarized in Table 1. To our knowledge, the
problem of bounding the adversarial Rademacher complexity of deep neural networks has remained
unsolved since it was first raised in 2018. In this paper, we resolve this problem and provide the first
bound for the adversarial Rademacher complexity of deep neural networks. Our approach is based
on the covering number, which serves as an upper bound for Rademacher complexity. In adversarial
settings, this problem becomes:

How to calculate the covering number of the adversarial hypothesis class?

The first challenge for this problem is that the closed-form expression of optimal adversarial examples
is not known. To address this, we introduce a concept called intermediate adversarial examples,
which allow us to bound the covering number of the linear function class without requiring access to
the closed-form solution of the optimal adversarial example. Using this approach, we reproduce the
bound in the linear setting. The formal definition of intermediate adversarial examples is provided
later in Lemma 1.

The second challenge arises from the conflict between existing methods for calculating the
covering number of DNNs and the dynamic nature of intermediate adversarial examples. Current
techniques for computing the covering number of DNNs assume a static training set, whereas
adversarial examples are model-dependent and evolve dynamically. To resolve this issue, we
introduce a lemma called Layer-wise Induction for Adversarial Hypothesis Class, which is designed
to be compatible with our intermediate adversarial examples. The formal statement of this lemma is
provided later in Lemma 2. By combining these two techniques, we establish the first bound on the
adversarial Rademacher complexity of DNNs.

Main Result. For depth-l, width-h fully-connected neural networks, assume that the weight
matrices W1,W2, . . . ,Wl in each of the l layers have Frobenius norms bounded by M1, . . . ,Ml, and
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all n samples are bounded by B. Then, with high probability,

Adversarial Rademacher Complexity ≤ O
(

(B + ε)h
√
l log l

∏l
j=1Mj√

n

)
.

We provide a comparison with existing bounds in similar settings. We show that our bound is
comparable to (1) the upper bound for standard Rademacher complexity and (2) the upper bound for
adversarial Rademacher complexity of two-layer neural networks (Awasthi et al., 2020). Additionally,
we provide a lower bound for adversarial Rademacher complexity and extend the results to multi-class
classification settings. Finally, we study some empirical implications of our bounds. Our experiments
indicate that the weight norm is positively correlated with the robust generalization gap. These
findings contribute to a deeper theoretical understanding of adversarial robustness in deep learning
models.

2. Related Work

Adversarial Attacks and Defense. Since 2013, it has been well established that deep neural
networks trained using standard gradient descent are highly vulnerable to small perturbations in input
data (Szegedy et al., 2013; Goodfellow et al., 2014; Chen et al., 2017; Carlini and Wagner, 2017;
Madry et al., 2017). Research on improving the robustness of neural networks has followed two
main directions. One line of work focuses on developing defense mechanisms to enhance model
robustness against adversarial attacks (Wu et al., 2020; Gowal et al., 2020). Another line aims to
design stronger adversarial attacks to evaluate and challenge existing defenses (Athalye et al., 2018;
Tramer et al., 2020; Chen et al., 2017; Xiao et al., 2022c).

Robust Generalization. Prior research has demonstrated that increasing the amount of training
data can improve robust generalization (Schmidt et al., 2018; Raghunathan et al., 2019; Zhai et al.,
2019). Several works have analyzed generalization in adversarial settings through the lens of
VC-dimension (Attias et al., 2021; Montasser et al., 2019). Neyshabur et al. (2017b) applied a
PAC-Bayesian framework to derive generalization bounds for neural networks, which was later
extended to adversarial settings by Farnia et al. (2018); Xiao et al. (2023). Sinha et al. (2017)
examined robust generalization in the context of distributional robustness, while Allen-Zhu and Li
(2020) explored it from the perspective of feature purification. Additionally, Javanmard et al. (2020)
studied generalization properties in the setting of linear regression.

Rademacher Complexity. Neyshabur et al. (2015) applied a layer-peeling technique to derive a
generalization bound for depth-l neural networks. Specifically, assuming that the Frobenius norms of
the weight matrices W1,W2, . . . ,Wl are bounded by M1, . . . ,Ml, and that all n input instances have
`2-norm bounded by B, they showed that the generalization gap between the population risk and
the empirical risk is bounded with high probability by O(B2l

∏l
j=1Mj/

√
n). Additionally, Bartlett

et al. (2017) provided a spectral norm-based bound on the Rademacher complexity by controlling
the covering number of the function class of deep neural networks. The relevant work on Adversarial
Rademacher Complexity is discussed in the Introduction, with further details provided in Appendix
B. For a more detailed discussion, see Appendix B.3.
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3. Preliminaries

3.1 Generalization Gap and Rademacher Complexity

Generalization Gap. In the classical machine learning framework, we consider a function class
F (e.g., linear functions, neural networks). The learning objective is to find a function f ∈ F that
minimizes the population risk:

R(f) = E(x,y)∼D[`(f(x), y)],

where D denotes the underlying data distribution and `(·) is the loss function. Since D is typically
unknown, we minimize the empirical risk in practice. Given n independent and identically distributed
(i.i.d.) samples S = {(x1, y1), . . . , (xn, yn)}, the empirical risk is defined as:

Rn(f) =
1

n

n∑
i=1

`(f(xi), yi).

The generalization gap is then defined as the difference between the population risk and the empirical
risk:

Generalization Gap := R(f)−Rn(f).

Let the hypothesis class be defined asH = {h | h(x, y) = `(f(x), y), f ∈ F}, which connects the
loss function to the function class. The Rademacher complexity framework leads to the following
generalization bound.

Proposition 1 (Bartlett and Mendelson (2002)). Let the loss function `(f(x), y) be bounded with
range [0, C]. Then for any δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds
for all f ∈ F:

R(f) ≤ Rn(f) + 2CRS(H) + 3C

√
log 2

δ

2n
.

3.2 Robust Generalization Gap and Adversarial Rademacher Complexity

Robust Generalization Gap. In the context of adversarial robustness, we define the robust popu-
lation risk and robust empirical risk as follows:

R̃(f) = E(x,y)∼D max
‖x′−x‖p≤ε

`(f(x′), y) and R̃n(f) =
1

n

n∑
i=1

max
‖x′i−xi‖p≤ε

`(f(x′i), yi).

Throughout this paper, we focus on general `p attacks where p ≥ 1. We denote by B(x) the general
perturbation set around point x. For `p attacks, this set is defined as B(x) = {x′ | ‖x′ − x‖p ≤ ε}.
The robust generalization gap is then defined as:

Robust Generalization Gap := R̃(f)− R̃n(f).

Let the adversarial loss be defined as ˜̀(f(x), y) := maxx′∈B(x) `(f(x′), y). We then define the
adversarial hypothesis class as:

H̃ =
{
h̃ : h̃(x, y) = ˜̀(f(x), y), f ∈ F

}
. (2)

Then, according to Proposition 1, the robust generalization gap can be bounded by the Rademacher
complexity of H̃. We have the following robust generalization bound.
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Proposition 2 (Yin et al. (2018)). Let the loss function `(f(x), y) be bounded with range [0, C].
Then for any δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds for all f ∈ F :

R̃(f) ≤ R̃n(f) + 2CRS(H̃) + 3C

√
log 2

δ

2n
.

Definition 3 (Adversarial Rademacher Complexity). Following Proposition 2, we define the Adver-
sarial Rademacher Complexity (ARC) as the Rademacher complexity of the adversarial hypothesis
class H̃:

RS(H̃) = Eσ
1

n

[
sup
h̃∈H̃

n∑
i=1

σih̃(x′i, yi)

]
= Eσ

1

n

[
sup
h∈H

n∑
i=1

σi max
x′i∈B(xi)

h(x′i, yi)

]
,

The Rademacher complexity can be further upper bounded using the covering number, which we
define as follows.

Definition 4 (ε-cover). Let ε > 0 and (V, d(·, ·)) be a metric space, where d(·, ·) is a (pseudo)-metric.
A subset C ⊂ V is called a ε-cover of V if for any v ∈ V , there exists v′ ∈ C such that d(v, v′) ≤ ε.
The ε-covering number of V , denoted as N (V, d(·, ·), ε), is defined as the minimum cardinality |C|
over all possible ε-covers1.

We now specialize this concept to hypothesis classes. Given a sample dataset S, we define a
pseudometric onH as: ‖h‖2S = 1

n

∑n
i=1 h(xi, yi)

2. The ε-covering number ofH is then defined as
N (H, ‖ · ‖S , ε). We define the diameter ofH as: D , 2 maxh∈H ‖h‖S .

Function Class. We consider depth-l, width-h fully-connected neural networks,

F = {x 7→Wlρ (Wl−1ρ (· · · ρ (W1x) · · · )) | ‖Wj‖ ≤Mj , j = 1, . . . , l} . (3)

where ρ(·) is an element-wise Lρ-Lipschitz activation function and ρ(·) = 0, Wj are hj × hj−1
matrices, for j = 1, · · · , l. h0 equals to the input dimension d. Let h = max {h0, · · · , hl} be the
width of the neural networks. Denote the (a, b)-group norm ‖W‖a,b as the a-norm of the b-norm of
the rows of W . We consider two cases in Equation (3): the Frobenius norm and the ‖ · ‖1,∞-norm.
The corresponding function classes are denoted as F2 and F1,∞, respectively. Additionally, let the
training data be x1, · · · , xn ∈ Rd. We assume that ‖X‖p,∞ = B, where X is a matrix of the all the
samples, the ith rows of x is xTi .

4. Main Challenges in Bounding ARC

In this section, we discuss the fundamental challenges encountered when calculating the covering
number of an adversarial hypothesis class and present our approach to addressing these challenges.

4.1 Challenge 1: Distance Between Two Adversarial Functions

For simplicity, we consider the binary classification case and use a 1-dimensional function as an
example. Following (Yin et al., 2018; Awasthi et al., 2020), let the loss function be `(f(x), y) =

1. We use two different Greek alphabet: ε for adversarial attacks and ε for covering number.
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φ(yf(x)), where φ is a non-increasing function. Then

max
x′

`
(
f
(
x′
)
, y
)

= φ

(
min
x′

yf
(
x′
))

.

Assume that the function φ is Lφ-Lipschitz, by Talagrand’s Lemma (Ledoux and Talagrand, 2013),
we haveRS(H̃) ≤ LφRS(F̃), where we define the adversarial hypothesis class as

F̃ =

{
f̃ : (x, y) 7→ inf

‖x−x′‖p≤ε
yf
(
x′
)
| f ∈ F

}
. (4)

Let fw(x) : R → R with |w| ≤ M and its adversarial function gw(x) , minx′∈[x−ε,x+ε] fw(x′).
Suppose we have only one sample x with |x| = B. Suppose fw(x) is L-Lipschitz w.r.t. w in x, e.g.,
wx, sin(w)x5. Note that gw(x) may not be Lipschitz continuous w.r.t. w. The problem is as follows:

Problem 1. Bound the size of an ε-cover N (F̃ , ‖ · ‖S , ε) of the adversarial hypothesis class F̃ ={
g(x) , minx′ ∈ [x− ε, x+ ε]fw(·) : |w| ≤M

}
given sample x. Here, the ε-cover is a set of

functions whose distance to any function in F̃ is no more than ε.

To help better understand Problem 1, we consider a simpler problem of a standard function class
F = {fw(·) : R→ R | |w| ≤M}.

Problem 2. Bound the size of an ε-coverN (F , ‖ ·‖S , ε) of F = {fw(·) : R→ R | |w| ≤M} given
sample x.

The idea is to build a relation between a cover of the function class and a cover of the parameter
region, which is a subset of Euclidean space. For this purpose, we only need to relate the distance in
the parameter space to the distance in the function space. More specifically, suppose |w1−w2| ≤ εw,
then |fw1(x) − fw2(x)| ≤ L|w1 − w2| ≤ εwL. As a result, |w1 − w2| ≤ εw = ε/L ⇒ |fw1(x) −
fw2(x)| ≤ ε. This implies that an εw-cover of [−M,M ] leads to a ε-cover of F . In the rest of the
paper, we refer to |fw1(x)− fw2(x)| as weight perturbation. The next step is to bound the size of the
εw-cover of [−M,M ]. In fact, {M,M − 2εw,M − 4εw, . . . } is one such cover, with size no more
than 2M/(2εw) = M/εw. Therefore, for general L-Lipschitz function, the ε-cover of F is no more
than M/εw = ML/ε.

Linear function. For particular functions, the Lipschitz constant L needs to be estimated. We use
the linear function as an example. In this case, |fw1(x)− fw2(x)| = |w1x−w2x| = |w1−w2||x| =
|w1 −w2|B. This implies that the Lipschitz constant L = B. Therefore, the ε-cover of F is no more
than M/εw = MB/ε.

Now we return to Problem 1. It is evident that the problem would be resolved if we knew the
Lipschitz constant of the adversarial function. However, the adversarial function gw(x) might not be
Lipschitz continuous. A small change in the input x might cause a large change in the function value.
The following naive method illustrates the challenge and demonstrates why applying the standard
approach fails to provide a bound.

Assume fw(x) = wx. Let x∗i = inf‖x−x′‖≤ε fwi(x
′), i = 1, 2. A naive method is to use triangle

inequality to get |fw1(x∗1) − fw2(x∗2)| = |w1x
∗
1 − w2x

∗
2| ≤ |(w1 − w2)x

∗
1| + |w2(x

∗
1 − x∗2)| ≤

εwB+ 2Mε
want
= ε. Thus an ε-cover of the function space can be built from an ((ε−2Mε)/B)-cover
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in w-space. This is only possible when ε > Mε, thus we cannot build an ε-cover for arbitrarily small
ε > 0. As a result, as n → ∞, the corresponding ARC bound would have a non-vanishing term,
which is undesirable.

The key issue seems to be controlling the extra term |w2(x
∗
1− x∗2)|. For a linear function fw, this

can be resolved by obtaining the closed-form solutions of x∗1 and x∗2. This is essentially the type 1
attempts. However, for general fw (e.g., DNNs), the relation of the worst-perturbed points x∗1 and x∗2
is unclear.

Our solution to Problem 1 is provided as followed. Let

x∗1 = arg inf
‖x−x′‖≤ε

w1x
′, and x∗2 = arg inf

‖x−x′‖≤ε
w2x

′,

and

x̄ =

{
x∗2 if w1x

∗
1 ≥ w2x

∗
2

x∗1 if w1x
∗
1 < w2x

∗
2.
.

If w1x
∗
1 ≥ w2x

∗
2, we have w1x

∗
1 −w2x

∗
2 ≤ w1x

∗
2 −w2x

∗
2 = w1x̄−w2x̄. If w1x

∗
1 < w2x

∗
2, we have

w2x
∗
2 − w1x

∗
1 ≤ w2x

∗
1 − w1x

∗
1 = w2x̄− w1x̄. The choice of x̄ is illustrated in Figure 1. Combine

these two inequalities, we have

|w1x
∗
1 − w2x

∗
2| ≤ |w1x̄− w2x̄| ≤ |w1 − w2| |x̄| ≤ εw (B + ε) . (5)

x

w1

w2

x∗1

x∗2
x̄

ε

Figure 1: A schematic illustration of points x∗1 and x∗2 in the ball ‖x′ − x‖ ≤ ε that minimize w1x
′

and w2x
′, respectively. The point x̄ is chosen depending on which inner product is smaller. The

inequality |w1x
∗
1 − w2x

∗
2| ≤ |w1x̄− w2x̄| ≤ |w1 − w2|‖x̄‖ ≤ εw(B + ε) follows from comparing

x∗1, x∗2, and x̄.

Therefore, the ε-cover of F̃ is no more than M/εw = M(B + ε)/ε.

Remark 1. This approach recovers the upper bound of ARC for linear functions, as established in
Khim and Loh (2018); Yin et al. (2018). The main advantage of this approach is that it provides a
bridge for computing the distance between two adversarial functions without requiring the closed-
form solution of adversarial examples. Consequently, this method shows potential for extension
to multi-layer neural networks. However, we will demonstrate an additional challenge prevents
the direct application of this approach to multi-layer neural networks in the following subsection.
Nevertheless, our proof reveals that the definition of x̄ is a crucial step. We refer to this as the
intermediate adversarial example and present the corresponding lemma for general functions below.

8
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Lemma 1 (Intermediate Adversarial Example). Given (x, y) and perturbation set B(x). For all
h̃1, h̃2 ∈ H̃ with their standard counterparts h1, h2 ∈ H, there exists an adversarial example
x′(h̃1, h̃2) ∈ B(x), s.t.∣∣∣h̃1(x, y)− h̃2(x, y)

∣∣∣ ≤ ∣∣∣h1 (x′ (h̃1, h̃2) , y)− h2 (x′ (h̃1, h̃2) , y)∣∣∣ .
We refer to this adversarial example x′(h̃1, h̃2) ∈ B(x) as intermediate adversarial example.

4.2 Challenge 2: Weight-Dependent Nature of Adversarial Examples

While our approach successfully bounds the ARC for linear functions using intermediate adversarial
examples, extending this method to DNNs presents inherent challenges. The primary difficulty arises
from a fundamental conflict between the intermediate adversarial example approach and established
methods for bounding DNN Rademacher complexity, such as layer peeling and covering number
techniques. The conflict stems from the dynamic nature of intermediate adversarial examples: the
point x̄ varies as we move from (l − 1)-layer to l-layer networks. This variability contradicts a key
requirement of traditional methods, which rely on fixed inputs at each layer. We use the covering
number approach by Bartlett et al. (2017) to illustrate this challenge. Let Xi denote the fixed output
of the i-th layer. The covering number of the hypothesis class H are derived through induction,
expressing the bound in Eq. (6) as a sum of covering numbers over matrix space of Wjxj−1.

lnN (H, ‖ · ‖S , ε) ≤
l∑

j=1

sup
(W1,...,Wj−1)

lnN
({

Wjxj−1 :
∥∥∥W>j ∥∥∥

2,1
≤ aj

}
, ‖ · ‖, δj

)
. (6)

for some ε. In the adversarial setting, however, xj−1 is not fixed; it depends on both the weights
of the preceding layers (W1, . . . ,Wj−1) and the weights of subsequent layers (Wj , . . . ,Wl). This
interdependence between layers prevents the direct application of traditional covering number bounds
to the adversarial setting. The same issue arises in the layer peeling approach, as detailed in Appendix
B. To address this challenge, we propose an alternative decomposition based on Lemma 1, which
bounds the covering number of the adversarial hypothesis class using the covering number of the
weight space.

Lemma 2 (Layer-wise Induction for Adversarial Hypothesis Class). Let (δ1, . . . , δl) be given, along
with Lipschitz activation function ρ (where ρ is Lρ-Lipschitz and ρ(0) = 0). Let the loss function
`(f(x), y) be Lφ-Lipschitz with respect to the first argument. Let the function class be F2 or F1,∞
and the adversarial hypothesis class be defined in (2). Define

ε = Lφ

l∑
j=1

Ll−1ρ

∏l
k=1Mk

Mj
max

{
1, d

1− 1
r
− 1
p

}
(‖x‖p,∞ + ε) δj , (7)

where r = 2 for Frobenius norm and r = 1 for (1,∞)-norm. Then:

ln
(
N
(
H̃, ‖ · ‖S , ε

))
≤

l∑
j=1

ln (N ({Wj | ‖Wj‖ ≤Mj} , ‖ · ‖, δj)) .

Since the upper bound is expressed as a sum of covering numbers over the weight spaces Wj

rather than the weight-input products Wjxj−1, it effectively resolves the issue of input dependency
on subsequent layer weights.
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5. Bounds for Adversarial Rademacher Complexity

5.1 Binary Classification

We begin by establishing bounds for the ARC in the binary classification setting.

Theorem 5 (Frobenius Norm Bound). Consider the function class F2, and its corresponding
adversarial function class H̃ in Eq. (2). The ARC of deep neural networks,RS(H̃), satisfies

RS(H̃) ≤
24Lφ√
n

max
{

1, q
1
2
− 1
p

}
(‖X‖p,∞ + ε)Ll−1ρ

√√√√ l∑
j=1

hjhj−1 log(3l)
l∏

j=1

Mj .

Furthermore, under the assumptions that Lφ = 1, Lρ = 1, p ≤ 2, ‖X‖p,∞ = B, and h =
max {h0, · · · , hl}, we have

RS(H̃) ≤ O

(
(B + ε)h

√
l log(l)

∏l
j=1Mj√

n

)
. (8)

The proof is based on bounding the Rademacher complexity using the covering number, which is
known as Dudley’s integral. Specifically, we proceed as follows:

• We first establish an upper bound on the distance between two adversarial functions using
Lemma 1 (Intermediate Adversarial Example).

• Next, we apply Lemma 2 to relate the covering number of the adversarial hypothesis class to
the covering number of the weight norm.

• This reduces the problem to bounding the covering number of a norm ball, a well-established
result in mathematical analysis.

The complete proof is provided in Appendix A.

Theorem 6 ((1,∞)-norm Bound). Consider the function class F1,∞, and its corresponding adver-
sarial function class H̃ in Eq. (2). The ARC of deep neural networks,RS(H̃), satisfies

RS(H̃) ≤ 24√
n

(
‖X‖p,∞ + ε

)
Ll−1ρ

√√√√ l∑
j=1

hjhj−1 log (3l)

l∏
j=1

Mj .

In the case of the (1,∞)-norm, the bound is similar to that of the Frobenius norm, except for the
additional term max

{
1, d1/2−1/p

}
. Therefore, for all p ≥ 1, the (1,∞)-norm bound maintains the

same order as in Eq. (8).
We compare our bound to the bounds in similar settings. Specifically, we compare our bound

with the covering number bounds for (standard) Rademacher complexity (Bartlett et al., 2017) and
the bound of ARC in two-layer cases.

Covering Number Bound for Standard Rademacher complexity. The work of Bartlett et al.
(2017) used a covering number argument to show that the generalization gap is bounded by

Õ

B∏l
j=1 ‖Wj‖√
n

 l∑
j=1

‖Wj‖2/32,1

‖Wj‖2/3

3/2
 .

10
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Our bound differs in two key aspects. First, it includes an additional dependence on ε, which is
unavoidable in adversarial settings. Second, as discussed in Neyshabur et al. (2017b) and Golowich

et al. (2018), the term
(∑l

j=1

‖Wj‖
2/3
2,1

‖Wj‖2/3

)
admits the following bounds:

l
3
2 ≤

 l∑
j=1

‖Wj‖2/32,1

‖Wj‖2/3

3/2

≤ l
3
2h.

On the other hand, our bound exhibits a dependence on network size of O(
√
l log(l)h). The main

difference arises from the need for two distinct approaches to perform layer-wise induction in
standard and adversarial settings. Compared to the upper bound on network size dependence in
existing standard results, our bound maintains a comparable dependence on depth l and width h.

Bound for ARC in Two-Layer Cases. The work of Awasthi et al. (2020) established that the ARC
is bounded by

O
(

(B + ε)
√
h1d
√

log nM1M2√
n

)
in the two-layer setting. Applying our bound to the two-layer case, we obtain

O
(

(B + ε)
√
h1dM1M2√
n

)
,

which is strictly tighter. Notably, under the same conditions for other factors, our bound exhibits a
lower dependence on the sample size n.

Theorem 7 (Lower Bound). Consider the function class F2. Let F̃2 denote its corresponding
adversarial function class as defined in Eq. (4). There exists an activation function and a dataset S
such that the ARC of deep neural networks satisfies

RS(F̃2) ≥ Ω

(
(B + ε)

∏l
j=1Mj√
n

)
.

The proof is provided in Appendix A. For function classes F1,∞ with the (1,∞)-norm, ARC
admits the same lower bound. From this bound, we observe a gap in depth l and width h between the
upper and lower bounds, while the other terms remain unavoidable. In the next section, we extend
the ARC analysis to multi-class classification.

5.2 Multi-Class Classification

The setting for multi-class classification follows (Bartlett and Mendelson, 2002). In a K-class
classification problem, let Y = {1, 2, · · · ,K}. The functions in the hypothesis class F map X to
RK , the k-th output of f is the score of f(x) assigned to the k-th class.

Define the margin operator M(f(x), y) = [f(x)]y −maxy′ 6=y[f(x)]y′ . The function makes a
correct prediction if and only ifM(f(x), y) > 0. We consider a particular loss function `(f(x), y) =
φγ(M(f(x), y)), where γ > 0 and φγ : R→ [0, 1] is the ramp loss:

φγ(t) =


1 t ≤ 0

1− t
γ 0 < t < γ

0 t ≥ γ.

11
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φγ(t) ∈ [0, 1] and φγ(·) is 1/γ-Lipschitz. The loss function `(f(x), y) satisfies:

1

(
y 6= arg max

y′∈[K]
[f(x)]y′

)
≤ ` (f(x), y) ≤ 1

(
[f(x)]y ≤ γ + max

y′ 6=y
[f(x)]y′

)
.

Define the function class `F := {(x, y) 7→ φγ(M(f(x), y)) : f ∈ F}. In adversarial training, the
adversarial hypothesis class is defined as

˜̀F :=

{
(x, y) 7→ max

x′∈B(x)
φγ
(
M
(
f(x′), y

))
: f ∈ F

}
. (9)

Then, the following generalization bound holds.

Corollary 8 ((Yin et al., 2018)). Consider the above adversarial multi-class classification setting.
For any fixed γ > 0, we have with probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
∃x′ ∈ Bpx(ε) s.t. y 6= arg max

y′∈[K]

[
f(x′)

]
y′

}
≤ 1

n

n∑
i=1

1

(
∃x′i ∈ Bpxi(ε) s.t.

[
f(x′i)

]
yi
≤ γ + max

y′ 6=y

[
f(x′i)

]
y′

)

+ 2RS(˜̀F ) + 3

√
log 2

δ

2n
.

Using the same idea as in binary settings, we can calculate the covering number of the adversarial
hypothesis class via intermediate adversarial examples. Then, we have the following bound for ARC.

Theorem 9. Given the function class F2, and the corresponding adversarial hypothesis class ˜̀F in
Eq. (9), the ARC of deep neural networksRS(˜̀F ) satisfies

RS(˜̀F ) ≤ 48

γ
√
n

max
{

1, q
1
2
− 1
p

}
(‖X‖p,∞ + ε)Ll−1ρ

√√√√ l∑
j=1

hjhj−1 log(3l)
l∏

j=1

Mj . (10)

The proof is based on the fact that φγ(M(·, y)) is 2/γ-Lipshitz, which is provided in Appendix
A. Notably, our bound is independent of the number of classes K, improving from O(K) (Yin et al.,
2018) to O(1). Comparing Theorems 9 and 5, we observe that the bound for the multiclass setting is
as tight as that for the binary case. Therefore, from the perspective of ARC, increasing the number of
classes does not impact adversarially robust generalization.

6. Experiments

6.1 Comparing Standard and Adversarial Rademacher Complexity

We now examine the relationship between the bounds for standard and adversarial Rademacher
complexity. We begin by recalling the upper bound for standard Rademacher complexity from
Golowich et al. (2018):

RS(H) ≤ O

(
B
√
l
∏l
j=1Mj

γ
√
n

)
. (11)

Next, we categorize the factors in the bounds into two groups.

12
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Algorithm-Independent Factors. The bounds include five algorithm-independent factors: the
number of samples n, depth l, width h, sample size B, and perturbation intensity ε. For notational
convenience, we define Cstd = B

√
l/
√
n and Cadv = (B + ε)h

√
l log l/

√
n as the constants for

standard and adversarial Rademacher complexity, respectively. By definition, Cadv > Cstd.

Algorithm-Dependent Factors. There are two remaining terms: the product of upper bounds
on matrix norms,

∏l
j=1Mj , and the margin, γ. By definition, these terms are independent of the

algorithm. However, they are implicitly algorithm-dependent. The bound is universal and holds for
all neural networks with weights satisfying ‖Wj‖ ≤Mj for j = 1, . . . , l. Conversely, once a neural
network is trained with specific weight norms ‖Wj‖, we can set Mj = ‖Wj‖ for all j, ensuring that
the bound applies specifically to the trained network and is the tightest possible bound for it. Similarly,
γ is set to the margin of the trained network. Thus, the two algorithm-dependent factors in the bound
are the product of weight norms and the margin. We define the ratio Wstd :=

∏l
j=1 ‖Wj‖/γ for

standard training and Wadv :=
∏l
j=1 ‖Wj‖/γ for adversarial training. Our experimental results,

presented in the next subsection and Appendix C, consistently show that Wadv > Wstd.

Generalization Gap Analysis. Let E(·) denote the standard generalization gap and Ẽ(·) represent
the robust generalization gap. We use fstd and fadv to denote models trained using standard and
adversarial training, respectively. Our analysis aims to understand why adversarially trained models
exhibit substantially larger robust generalization gaps compared to the standard generalization gaps
of normally trained models (i.e., why Ẽ(fadv) > E(fstd)). While prior work (Zhang et al., 2021) has
established that Rademacher complexity is large in these settings, we can still analyze the relationship
between robust generalization gaps and our identified factors through the standard and ARC bounds:

Ẽ(fadv) ∝ CadvWadv and E(fstd) ∝ CstdWstd.

Notably, the bounds apply universally to any model. We can analyze the standard Rademacher
complexity bound for adversarially trained models, i.e., CstdWadv, and vice versa. To isolate the
individual effects of factors Cadv and Wadv, we examine two additional generalization gaps: the
robust generalization gap of standard-trained models (Ẽ(fstd)) and the standard generalization gap of
adversarially-trained models (E(fadv)). These gaps help decompose the contributions of each factor:

Ẽ(fstd) ∝ CadvWstd and E(fadv) ∝ CstdWadv.

In the previous section, we identified the normalized product of weight norms
∏l
j=1 ‖Wj‖/γ as

a key algorithm-dependent factor in the ARC bounds. To empirically validate our theoretical analysis,
we conducted extensive experiments comparing these terms between standard and adversarial
training settings. Since our bounds generalize to convolutional neural networks, we evaluated
VGG architectures (Simonyan and Zisserman, 2014) on both CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009). Our analysis encompasses 88 trained models, with additional experimental
results provided in Appendix C.

Training Protocol. We employed SGD optimization with a three-stage learning rate schedule: 0.1
for the first 100 epochs, 0.01 for the next 50 epochs, and 0.001 for the final 50 epochs. Weight decay
was primarily set to 5× 10−4, which was empirically determined to be optimal for robust accuracy,
though we explored other values in ablation studies. For adversarial training, we implemented `∞
PGD (Madry et al., 2017) with ε = 8/255 perturbation intensity, using 20 steps during training and
40 steps during testing, with a step size of 2/255 for inner maximization.
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Margin Computation. Following Neyshabur et al. (2017a), we defined margins differently for
standard and adversarial training. For standard training, the margin was calculated as the 5th
percentile of f(xi)[yi] − maxy 6=yi f(x)[y] across all training points. For adversarial training, we
used the 5th percentile of margins computed on PGD-adversarial examples. Since both the standard-
trained and adversarially-trained models achieved 100% training accuracy, the margins of all samples
are positive. This ensures that the 5th percentile of margins is also positive. the Detailed ablation
studies on percentile selection are presented in Appendix C.3.
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Figure 2: Comparison of Frobenius norms between standard and adversarial training models on
CIFAR-10 and CIFAR-100 datasets.

Higher Weight Norms in Adversarially-Trained Models. Figure 2 compares weight norms
between standard and adversarial training across VGG architectures on both CIFAR-10 and CIFAR-
100 datasets2. Using a logarithmic scale for visualization, our results consistently demonstrate
that adversarially-trained models have larger weight norms than their standard-trained counterparts
(Wadv ≥Wstd). Additional ablation studies in Appendix C further confirm this relationship across
different experimental conditions.

Analysis of Standard and Robust Generalization Gaps. Table 2 presents standard and robust
generalization gaps for both training approaches, using VGG-19 on CIFAR-10 as our primary
example. Standard-trained models exhibit small standard generalization gaps (E(fstd) = 10.45%),
while adversarially-trained models show larger standard generalization gaps (E(fadv) = 26.34%).
This increased gap aligns with the known phenomenon that adversarial training typically compromises
standard generalization, possibly due to overfitting to adversarial examples. The robust generalization
gap presents a striking contrast: standard-trained models show minimal robust generalization gaps
(Ẽ(fstd) = 0), but this is not indicative of good performance. Rather, it reflects uniformly poor
robustness, with both training and test robust accuracy approaching 0%. Conversely, adversarially-
trained models exhibit large robust generalization gaps (Ẽ(fadv) = 58.90%). This substantial gap in
robust generalization is a key phenomenon that we aim to analyze and explain.

Interpreting Zero Robust Generalization Gap in Standard Training. Table 2 reveals that
Ẽ(fstd) = 0% represents a degenerate case where standard-trained models achieve 100% ro-

2. While larger models naturally exhibit higher weight norms due to their increased parameter count, our focus is on the
relative difference between adversarially-trained and standard-trained models.
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Table 2: Comparison of four generalization gaps for VGG-19 trained on CIFAR-10: standard and
robust gaps for both training methods. Note: Ẽ(fstd) = 0% reflects complete model failure (100%
training error), while other cases achieve near-zero training errors.

Standard-trained models Adversarially-trained models

Types of Generalization Gaps Standard Robust Standard Robust
Training Errors 0% 100% 0% 0.02%

Test Errors 10.45% 100% 26.34% 58.92%
Generalization Gaps E(fstd)=10.45% Ẽ(fstd)=0% E(fadv)=26.34% Ẽ(fadv)=58.90%

bust training error, indicating complete failure to fit any adversarial examples in the training set.
This renders both the generalization gap and its corresponding Rademacher complexity bound
Ẽ(fstd) ≤ O(CadvWstd/

√
n) trivial. In contrast, the other three cases achieve near-zero training

errors, providing meaningful generalization gaps. We focus our analysis on understanding why
Ẽ(fadv) > E(fstd) by examining the relationship Ẽ(fadv) > E(fadv) > E(fstd).

Impact ofCadv on Generalization Gaps. Comparing generalization gaps for adversarially-trained
models, we observe that the robust generalization gap significantly exceeds the standard general-
ization gap (Ẽ(fadv) = 58.90% > E(fadv) = 26.34%). Using Rademacher complexity bounds
as approximations for these gaps, we can express this relationship as Ẽ(fadv) ∝ CadvWadv and
E(fadv) ∝ CstdWadv. This suggests that Cadv directly contributes to the increased robust generaliza-
tion gap, as it scales with the perturbation intensity ε.

Impact of Wadv on Standard Generalization. When comparing standard generalization gaps,
we observe that adversarially-trained models exhibit poorer generalization compared to standard
training (E(fadv) = 26.34% > E(fstd) = 10.45%). This widely observed degradation in standard
generalization can be understood through Rademacher complexity bounds. Using these bounds
as approximations (E(fadv) ∝ CstdWadv and E(fstd) ∝ CstdWstd), we can attribute the increased
generalization gap to larger weight norms in adversarially-trained models (Wadv), demonstrating its
positive correlation with generalization degradation.

The relationship between generalization gaps (Ẽ(fadv) > E(fadv) > E(fstd)) can be character-
ized by the corresponding complexity terms: CadvWadv > CstdWadv > CstdWstd. This analysis
reveals that robust generalization challenges stem from two distinct sources: (1) an algorithm-
independent component Cadv, which is inherent to the minimax nature of adversarial training and
thus unavoidable, and (2) an algorithm-dependent component Wadv, reflecting increased weight
norms in adversarially-trained models, which might be addressable through improved training
techniques.

Role of Weight Decay. Our analysis suggests that controlling weight norms could improve robust
generalization. In Appendix C.4, we investigate the effects of incrementally increasing weight
decay. While larger weight decay values reduce weight norms and improve generalization, they
also degrade training performance, revealing a fundamental trade-off between training accuracy
and generalization. At weight decay of 10−2, training fails completely, though notably, even in this
regime, adversarially-trained models maintain larger weight norms than standard-trained models.

Neural Network Representation Capacity. We hypothesize that the increased weight norms
in adversarial training stem from fundamental representation requirements: neural networks with
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small weight norms appear insufficient to fit adversarial examples in the training set, forcing the
optimization to converge to solutions with larger weight norms. However, as our analysis shows, these
large-norm solutions typically exhibit poor generalization properties, leading to robust overfitting.
While this hypothesis aligns with our observations, comprehensive validation would require large-
scale experimentation beyond our current scope.

7. Conclusion

Limitation. The main limitation is that norm-based bounds tend to be excessively large in practical
scenarios. As shown in Figure 2, the bounds for VGG networks exceed 109 in experiments on the
CIFAR-10 dataset. The key challenge is how to obtain tighter norm-based bounds in real-world
settings, not only for adversarial robustness but also in standard scenarios. This remains an open
problem.

We present the first bounds on adversarial Rademacher complexity for deep neural networks,
providing new theoretical insights into robust generalization. Our analysis reveals that robust
generalization challenges arise from two distinct sources: an algorithm-independent factor inherent
to the adversarial setting, and an algorithm-dependent factor related to neural network weight norms.
Through extensive empirical validation, we establish clear correlations between these factors and
robust generalization performance. These findings open new directions for both theoretical research
in understanding adversarial training and practical improvements in robust generalization methods.
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A. Proofs of Technical Results

A.1 Proof of Lemma 1

Proof Let
x(h̃1) = arg max

x′∈B(x)
h1(x

′, y), x(h̃2) = arg max
x′∈B(x)

h2(x
′, y).

Then,∣∣∣h̃1(x, y)− h̃2(x, y)
∣∣∣ ≤ max

{∣∣∣h1(x(h̃1), y)− h2(x(h̃1), y)
∣∣∣ , ∣∣∣h1(x(h̃2), y)− h2(x(h̃2), y)

∣∣∣} .
It is because

h1(x(h̃1), y)− h2(x(h̃2), y) ≤ h1(x(h̃1), y)− h2(x(h̃1), y)

and
h2(x(h̃2), y)− h1(x(h̃1), y) ≤ h2(x(h̃2), y)− h1(x(h̃2), y).

Let

x̄(h̃1, h̃2) =

{
x(h̃1), if h1(x(h̃1), y) ≥ h2(x(h̃2), y)

x(h̃2), if h1(x(h̃1), y) < h2(x(h̃2), y).
(12)

We have ∣∣∣h̃1(x, y)− h̃2(x, y)
∣∣∣ ≤ ∣∣∣h1(x̄(h̃1, h̃2), y)− h2(x̄(h̃1, h̃2), y)

∣∣∣ .
The expression in Eq. (12) is the intermediate adversarial examples.

A.2 Proof of Lemma 2

The proof of Lemma 2 requires the following Lemma.

Lemma 3 (Awasthi et al. (2020), cf. Lemma 1). If x∗i ∈ {x′i | ‖xi − x′i‖p ≤ ε}, then

‖x∗i ‖r∗ ≤ max{1, d1−
1
r
− 1
p }(‖X‖p,∞ + ε).

Proof If p ≥ r∗, applying Hölder’s inequality with 1/r∗ = 1/p+ 1/s, we obtain

‖x∗i ‖r∗ ≤ sup ‖1‖s‖x∗i ‖p = ‖1‖s‖x∗i ‖p = d
1
s ‖x∗i ‖p = d

1− 1
r
− 1
p ‖x∗i ‖p.

Equality holds when all entries are equal. If p < r∗, we have

‖x∗i ‖r∗ ≤ ‖x∗i ‖p.

Equality holds when one entry equals one, and all others are zero. Thus,

‖x∗i ‖r∗ ≤ max{1, d1−
1
r
− 1
p }‖x∗i ‖p

≤ max{1, d1−
1
r
− 1
p }(‖xi‖p + ‖xi − x∗i ‖p)

≤ max{1, d1−
1
r
− 1
p }(‖X‖p,∞ + ε).
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Lemma 4. Let A be an m× k matrix and b be an n-dimensional vector. Then,

‖Ab‖2 ≤ ‖A‖F ‖b‖2.

Proof Let Ai denote the rows of A for i = 1, . . . ,m. Then,

‖Ab‖2 =

√√√√ m∑
i=1

(Aib)2 ≤

√√√√ m∑
i=1

‖Ai‖22‖b‖22 =

√√√√ m∑
i=1

‖Ai‖22 ·
√
‖b‖22 = ‖A‖F ‖b‖2.

Lemma 5. Let A be an m× k matrix and b be an n-dimensional vector. Then,

‖Ab‖∞ ≤ ‖A‖1,∞‖b‖∞.

Proof Let Ai denote the rows of A for j = 1, . . . ,m. Then,

‖Ab‖∞ = max |Aib| ≤ max ‖Ai‖1‖b‖∞ = ‖A‖1,∞‖b‖∞.

Now, we move the the proof of Lemma 2.
Proof In Frobenius norm case, let r = 2 and Cj denote δj-covers of the set {‖Wj‖F ≤ Mj}, for
j = 1, 2, · · · , l. Define

Fc =
{
f c : x 7→W c

l ρ
(
W c
l−1ρ (· · · ρ (W c

1x) · · · )
)
,W c

j ∈ Cj , j = 1, 2, . . . , l
}

;

In (1,∞)-norm case, let r = 1 and Cmj be δj-covers of {‖Wm
j ‖1 ≤ Mj}, j = 1, 2, · · · , l, m =

1, · · · , hj , where Wm
j is the mth row of Wm

j . Let

Fc =
{
f c : x 7→W c

l ρ
(
W c
l−1ρ (· · · ρ (W c

1x) · · · )
)
,W cm

j ∈ Cmj , m = 1, . . . , hj , j = 1, 2, . . . , l
}
.

Then, the following discussion holds for both F2 and F1,∞. Define the adversarial hypothesis class
as

H̃c =
{
h̃ : h̃(x, y) = ˜̀(f(x), y) , f ∈ Fc

}
.

For any h̃ ∈ H̃, we aim to determine the smallest distance to H̃c, , which involves computing

max
h̃∈H̃

min
h̃c∈H̃c

∥∥∥h̃− h̃c∥∥∥
S
.

∀(xi, yi), i = 1, · · · , n, given h̃ and h̃c, by Lemma 1, there exist an intermediate adversarial example
x̄i, such that, ∣∣∣h̃(xi, yi)− h̃c(xi, yi)

∣∣∣ ≤ |h(x̄i, yi)− hc(x̄i, yi)| .

Since the loss function `(f(x), y) is Lφ-Lipschitz with respect to the first argument,∣∣∣h̃(xi, yi)− h̃c(xi, yi)
∣∣∣ ≤ Lφ |f(x̄i)− f c(x̄i)| .
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Define gab (·) as

gab (x̄) = Wbρ (Wb−1ρ (· · ·Wa+1ρ (W c
a · · · ρ (W c

1 x̄) · · · ))) .

In words, for the layers b ≥ j > a in gab (·), the weight is Wj , for the layers a ≥ j ≥ 1 in gab (·), the
weight is W c

j . Then we have f(x̄i) = g0l (x̄i), f(x̄i) = gll(x̄i). We can decompose

|f(x̄i)− f c(x̄i)| =
∣∣∣g0l (x̄i)− gll(x̄i)∣∣∣

=
∣∣∣g0l (x̄i)− g1l (x̄i) + · · ·+ gl−1l (x̄i)− gll(x̄i)

∣∣∣
≤

∣∣g0l (x̄i)− g1l (x̄i)∣∣+ · · ·+
∣∣∣gl−1l (x̄i)− gll(x̄i)

∣∣∣ . (13)

To bound the gap |f(x̄i)− f c(x̄i)|, we first calculate |gj−1l (x̄i)− gjl (x̄i)| for j = 1, · · · , l.

∣∣∣gj−1l (x̄i)− gjl (x̄i)
∣∣∣ =

∣∣∣Wlρ
(
gj−1l−1 (x̄i)

)
−Wlρ

(
gjl−1(x̄i)

)∣∣∣
(i)

≤ ‖Wl‖
∥∥∥ρ(gj−1l−1 (x̄i)

)
− ρ

(
gjl−1(x̄i)

)∥∥∥
r∗

(ii)

≤ LρMl

∥∥∥gj−1l−1 (x̄i)− gjl−1(x̄i)
∥∥∥
r∗

(iii)
= LρMl

∥∥∥Wl−1ρ
(
gj−1l−2 (x̄i)

)
−Wl−1ρ

(
gjl−2(x̄i)

)∥∥∥
r∗

≤ · · ·

≤ Ll−jρ

l∏
k=j+1

Mk

∥∥∥Wjρ
(
gj−1j−1(x̄i)

)
−W c

j ρ
(
gj−1j−1(x̄i)

)∥∥∥
r∗
.

where (i) is due to Lemma 4, (ii) is due to the bound of ‖Wj‖ and the Lipschitz of ρ(·), (iii) is
because of the definition of gab (x̄). Then

∣∣∣gj−1l (x̄i)− gjl (x̄i)
∣∣∣ ≤ Ll−jρ

l∏
k=j+1

Mk

∥∥∥Wjρ
(
gj−1j−1(x̄i)

)
−W c

j ρ
(
gj−1j−1(x̄i)

)∥∥∥
r∗

= Ll−jρ

l∏
k=j+1

Mk

∥∥∥(Wj −W c
j

)
ρ
(
gj−1j−1(x̄i)

)∥∥∥
r∗

(i)

≤ Ll−jρ

l∏
k=j+1

Mk

∥∥Wj −W c
j

∥∥∥∥∥ρ(gj−1j−1(x̄i)
)∥∥∥

r∗

(ii)

≤ Ll−jρ

l∏
k=j+1

Mkδj

∥∥∥ρ(gj−1j−1(x̄i)
)∥∥∥

r∗
. (14)
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where inequality (i) is due to Lemma 4, inequality (ii) is due to Lemma 4 and inequality (iii) is due
to the assumption that ‖Wj −W c

j ‖ ≤ δj . It is lefted to bound ‖ρ(gj−1j−1(x̄i)))‖r∗ , we have∥∥∥ρ(gj−1j−1(x̄i)
)∥∥∥

r∗
=

∥∥∥ρ(gj−1j−1(x̄i)
)
− ρ(0)

∥∥∥
r∗

≤ Lρ

∥∥∥gj−1j−1(x̄i)
∥∥∥
r∗

= Lρ

∥∥∥W c
j−1ρ

(
gj−2j−2(x̄i)

)∥∥∥
r∗

≤ Lρ
∥∥W c

j−1
∥∥∥∥∥ρ(gj−2j−2(x̄i)

)∥∥∥
r∗

≤ LρMj−1

∥∥∥ρ(gj−2j−2(x̄i)
)∥∥∥

r∗

≤ · · ·

≤ Lj−1ρ

j−1∏
k=1

Mk max
{

1, d
1
2
− 1
r
− 1
p

}
(‖x‖p,∞ + ε) . (15)

combining Eq. (14) and (15), we have∣∣∣gj−1l (x̄i)− gjl (x̄i)
∣∣∣ ≤ Ll−1ρ

∏l
k=1Mk

Mj
δj max

{
1, d

1
2
− 1
r
− 1
p

}
(‖x‖p,∞ + ε)

=
Dδj
2Mj

. (16)

Therefore, combining Eq. (13) and (16), we have

|f(x̄i)− f c(x̄i)| ≤
∣∣g0l (x̄i)− g1l (x̄i)∣∣+ · · ·+

∣∣∣gl−1l (x̄i)− gll(x̄i)
∣∣∣

≤
l∑

j=1

Dδj
2Mj

.

Then

max
f̃∈F̃

min
f̃c∈F̃c

∥∥∥f̃ − f̃ c∥∥∥
S
≤

l∑
j=1

Dδj
2Mj

.

Let δj = 2Mjε/LφlD, j = 1, · · · , l, we have

max
h̃∈H̃

min
h̃c∈H̃c

∥∥∥h̃− h̃c∥∥∥
S
≤ Lφ

l∑
j=1

Dδj
2Mj

≤ ε.

We then calculate the ε-covering number N (H̃, ‖ · ‖S , ε). Because H̃c is a ε-cover of H̃. The
cardinality of H̃c is

N
(
H̃, ‖ · ‖S , ε

)
=

∣∣∣H̃c∣∣∣
=

{∏l
j=1 |Cj | if r = 2;∏l
j=1

∏hj
m=1

∣∣∣Cmj ∣∣∣ if r = 1.

=
l∏

j=1

N ({Wj | ‖Wj‖ ≤Mj} , ‖ · ‖, δj) .

24



ADVERSARIAL RADEMACHER COMPLEXITY OF DEEP NEURAL NETWORKS

Therefore,

ln
(
N
(
H̃, ‖ · ‖S , ε

))
≤

l∑
j=1

ln (N ({Wj | ‖Wj‖ ≤Mj} , ‖ · ‖, δj)) .

A.3 Proof of Theorem 5 and 6

Before we provide the proof, we first introduce the Dudley’s integral.

Proposition 1 (Dudley’s integral). The Rademacher complexityRS(F) satisfies

RS(F) ≤ inf
δ≥0

[
8δ +

12√
n

∫ D/2

δ

√
logN (F , ‖ · ‖S , ε)dε

]
.

This proposition is a well-established result in statistical learning theory, with detailed proofs
available in standard references such as Wainwright (2019). Using this relationship between covering
numbers and Rademacher complexity, we can derive upper bounds on the Rademacher complexity
of function class F from its covering number bounds.

Lemma 6 (Covering number of norm-balls). Let B be a `p norm ball with radiusW . Let d(x1, x2) =
‖x1 − x2‖p. Define the ε-covering number of B as N (B, d(·, ·), ε), we have

N (B, d(·, ·), ε) ≤
(

1 +
2W

ε

)d
.

In the case of Frobenius norm ball of m× k matrices, we have the dimension d = m× k and

N (B, ‖ · ‖F , ε) ≤
(

1 +
2W

ε

)m×k
≤
(

3W

ε

)m×k
.

Now we move to the proof of Theorem 5.
Proof We first consider the Lipschitz constant of the loss function `(f(x), y) = φ(yf(x)) in binary
settings. Since

|φ (yf(x1))− φ (yf(x2))| ≤ Lφ |yf(x1)− yf(x2)| = Lφ |f(x1)− f(x2)| ,

the loss function `(f(x), y) = φ(yf(x)) is Lφ-Lipschitz with respect to the first argument. Based on
Lemma 2, define

ε = Lφ

l∑
j=1

Ll−1ρ

∏l
k=1Mk

Mj
max

{
1, d

1− 1
r
− 1
p

}
(‖x‖p,∞ + ε) δj .
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where r = 2 for Frobenius norm and r = 1 for (1,∞)-norm. Then:

ln
(
N
(
H̃, ‖ · ‖S , ε

))
≤

l∑
j=1

ln (N ({Wj | ‖Wj‖ ≤Mj} , ‖ · ‖, δj))

=
l∑

j=1

ln |Cj |

(i)

≤
l∑

j=1

ln

(
3Mj

δj

)hjhj−1

= ln

(
3LφlD

2ε

) l∑
j=1

hjhj−1.

where inequality (i)) is due to Lemma 6. By Dudley’s integral, we have

RS(H̃) ≤ inf
δ≥0

[
8δ +

12√
n

∫ LφD/2

δ

√
logN (H, ‖ · ‖S , ε)dε

]

≤ inf
δ≥0

[
8δ +

12√
n

∫ LφD/2

δ

√√√√√
 l∑
j=1

hjhj−1

 log(3LφlD/2ε)dε

]

= inf
δ≥0

[
8δ +

12LφD
√∑l

j=1 hjhj−1√
n

∫ 1/2

δ/LφD

√
log(3l/2ε)dε

]
. (17)

Let δ → 03. Then, we evaluate the integration∫ 1/2

0

√
log

(
3l

2ε

)
dε.

Let u = 3l
2ε , so ε = 3l

2u and dε = − 3l
2u2

du. When ε = 0, u→∞. When ε = 1
2 , u = 3l

2· 1
2

= 3l. The

integral becomes: ∫ 3l

∞

√
log u

(
− 3l

2u2

)
du =

3l

2

∫ ∞
3l

√
log u

u2
du.

Let t = log u, so u = et, du = etdt. When u = 3l, t = log(3l). The integral transforms to:

3l

2

∫ ∞
log(3l)

√
t e−tdt.

Let v =
√
t, dw = e−tdt. Then dv = 1

2
√
t
dt, w = −e−t, integration by part:∫ √

te−tdt = −
√
te−t +

1

2

∫
e−t√
t
dt.

3. Simply let δ = LφD/
√
n, we can obtain a bound in O(

√
logn/n). To get rid of the logn term, we can let δ → 0.

26



ADVERSARIAL RADEMACHER COMPLEXITY OF DEEP NEURAL NETWORKS

Essentially, the integral
∫∞
a t1/2e−tdt is the upper incomplete gamma function Γ

(
3
2 , a
)
. Using

properties of Γ:

Γ

(
3

2
, log(3l)

)
=
√
π erfc

(√
log(3l)

)
+
√

log(3l) e− log(3l).

Here erfc(x) is the complementary error function defined as:

erfc(x) = 1− erf(x),

where the error function erf(x) is given by:

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

Therefore, the integration is

3l

2

(√
log(3l)

3l
+

√
π

2
erfc

(√
log(3l)

))
=

1

2

(√
log(3l) +

3l

2

√
π erfc

(√
log(3l)

))
.

Finally, we provide the upper bound of the integration.∫ 1/2

0

√
log(3l/2ε)dε =

1

2

(
3l

2

√
πerfc(

√
log 3l) +

√
log 3l

)
≤ 1

2

(
3l

2

√
π exp(−

√
log 3l

2
) +

√
log 3l

)
=

1

2

(√
π

2
+
√

log 3l

)
≤ 1

2

(
2
√

log 3l

)
=

√
log 3l. (18)

Plugging Eq. (18) to Eq. (17), we have

RS(H̃) ≤ 24√
n

max
{

1, d
1
2
− 1
r
− 1
p

}
(‖x‖p,∞ + ε)Ll−1ρ

√√√√ l∑
j=1

hjhj−1 log(3l)

l∏
j=1

Mj .

A.4 Proof of Theorem 7

Let ρ(·) be the identity activation function. The following discussion hods for both F = F2 and
F1,∞. The proof of the theorem is based on constructing a linear network. By the definition of
Rademacher complexity, ifH′ is a subset ofH, then
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RS(H′) = Eσ
1

n

[
sup
h∈H′

n∑
i=1

σih(xi, yi)

]

≤ Eσ
1

n

[
sup
h∈H

n∑
i=1

σih(xi, yi)

]
= RS(H).

This inequality follows directly from the fact that restricting the hypothesis class cannot increase
the supremum in the definition of Rademacher complexity.

Therefore, it suffices to lower bound the complexity of F̃ ′ under a specific distribution D, where
F̃ ′ is a subset of F̃ . We define

F̃ ′ =
{
x 7→ inf

‖x′−x‖p≤ε
yMl ·M2w

Tx | w ∈ Rq, ‖w‖2 ≤M1

}
.

This formulation constrains the function class while maintaining a meaningful lower bound on its
complexity.

We first prove that F̃ ′ is a subset of F̃ . In F̃ , we set the activation function ρ(·) to be the identity
mapping. Define

W1 =


w
0
...
0

 ∈ Rh1×h0 , Wj =


Mj 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈ Rhj×hj−1 , j = 2, . . . , l. (19)

Since ‖Wj‖ ≤ Mj , imposing the additional constraint in Eq. (19) on F̃ reduces it to F̃ ′,
confirming that F̃ ′ is a subset of F̃ .

To proceed, we need to establish a lower bound for the adversarial Rademacher complexity of
linear hypothesis classes. This result follows from the work of Yin et al. (2019); Awasthi et al. (2020),
which we state below.

Proposition 4. Given the function class

G = {x→ ywTx|w ∈ Rq, ‖w‖r ≤W}

and
G̃ = {x→ inf

‖x′−x‖r≤ε
ywTx|w ∈ Rq, ‖w‖r ≤W},

the adversarial Rademacher complexityRS(G̃) satisfies

RS(G̃) ≥ max

{
RS(G),

εmax{1, d1−
1
r
− 1
p }W

2
√
n

}
.
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Since the standard Rademacher complexity

RS(G) =
W

m
Eσ‖

n∑
i=1

σixi‖r∗,

let ‖xi‖ = B with equal entries for i = 1, · · · , n, by Lemma 3, we have

RS(G) =
W

m
Eσ|

n∑
i=1

σi|max{1, d1−
1
r
− 1
p }B.

By Khintchine’s inequality, we know that there exists a universal constant c > 0 such that

Eσ|
n∑
i=1

σi| ≥ c
√
n.

Then, we have

RS(G) =
cW√
n

max{1, d1−
1
r
− 1
p }B.

Therefore,

RS(G̃) ≥ max

{
RS(G),

εmax{1, d1−
1
r
− 1
p }W

2
√
n

}
≥ 1

1 + 2c
RS(G) +

2c

1 + 2c
× εmax{1, d1−

1
r
− 1
p }W

2
√
n

≥ c

1 + 2c

(
(B + ε) max{1, d1−

1
r
− 1
p }W√

n

)
.

Let W =
∏l
j=1Mj , we have

RS(F̃) ≥ Ω

(
max{1, d1−

1
r
− 1
p }(B + ε)

∏l
j=1Mj√

n

)
,

where r = 2 for frobenius norm bound and r = 1 for ‖ · ‖1,∞-norm bound.

A.5 Proof of Theorem 9

Proof We consider the Lipschitz constant of the loss function `(f(x), y) = φγ(M(f(x), y)), where
γ > 0. First, by the definition of the ramp loss φγ : R → [0, 1], φγ is 1/γ-Lipschitz. Second, the
following lemma provides the Lipchitz constant of the margin operator.

Lemma 7 (Bartlett et al. (2017), cf. Lemma A.3). For every y and every p ≥ 1,M(·, y) is 2-Lipschitz
with respect to ‖ · ‖p.

Therefore, the loss function `(f(x), y) = φγ(M(f(x), y)) is 2/γ Lipshitz. The upper bound is
obtained by letting Lφ = 2/γ in Theorem 5.
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B. Discussion on Existing Methods for Rademacher Complexity

In this section, we review existing approaches for calculating Rademacher complexity, examine re-
lated work in the field, and highlight the challenges in analyzing adversarial Rademacher complexity.

B.1 Existing Bounds for Standard Rademacher Complexity

Layer Peeling Technique. The Rademacher complexity of multi-layer neural networks is primarily
calculated using the ‘layer peeling’ technique (Neyshabur et al., 2015). For a function class F and
function g, we define the composition g ◦ F as {g ◦ f |f ∈ F}. Talagrand’s Lemma establishes
thatRS(g ◦ f) ≤ LgRS(F). Applying this result to neural networks, we can show thatRS(Fl) ≤
2LρMjRS(Fl−1), where Fl represents the function class of l-layer neural networks. Since the
Rademacher complexity of a linear function class is bounded by O(BM1/

√
n), induction yields an

upper bound of O(B2lLl−1ρ

∏l
j=1Mj/

√
n). For activation functions like ReLU where Lρ = 1, we

can simplify this bound by eliminating the Lρ term.
Golowich et al. (2018) achieves an improved bound by reducing the depth dependence from

2l to
√
l. Their key insight involves reformulating the Rademacher complexity expression Eσ[·] as

Eσ exp ln[·]. This transformation allows for layer peeling to be performed within the ln(·) function,
effectively containing the exponential 2l term inside the logarithm and yielding the improved

√
l

dependence.

Covering Number. Bartlett et al. (2017) established a generalization gap bound using covering
numbers:

Õ
(
B
∏l
j=1 ‖Wj‖√
n

( l∑
j=1

‖Wj‖2/32,1

‖Wj‖2/3

)3/2)
,

where ‖ · ‖ denotes the spectral norm. Their proof employs layer-wise induction: for each layer
j, let Wj represent the layer’s weight matrix and Xj denote the network’s output after processing
through layers 1 to j−1. The bound is derived by inductively computing the matrix covering number
N ({WjXj}, ‖ · ‖2, ε) for each layer.

B.2 Existing Bounds for Rademacher Complexity on Surrogate Loss

For linear models, ARC bounds can be derived directly from its definition (Khim and Loh, 2018;
Yin et al., 2019). However, extending these analyses to multi-layer networks presents additional
challenges. We begin by examining approaches that utilize surrogate loss functions.

Tree Transformation Loss. Khim and Loh (2018) introduced a tree transformation T and demon-
strated that max‖x−x′‖≤ε `(f(x), y) ≤ `(Tf(x), y). This leads to an upper bound on the adversarial
population risk. Specifically, for any δ ∈ (0, 1):

R̃(f) ≤ R(Tf) ≤ Rn(Tf) + 2LRS(T ◦ F) + 3

√
log 2

δ

2n
,

where Rn(Tf) represents the empirical risk of the transformed function, RS(T ◦ F) is the
Rademacher complexity of the transformed function class, and L is the Lipschitz constant. This
result bounds the robust population risk in terms of empirical risk and the standard Rademacher
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complexity of the transformed function class T ◦ F . WhileRS(T ◦ F) serves as an approximation
of adversarial Rademacher complexity, this bound has two key limitations: the empirical risk term
Rn(Tf) differs from the objective used in practical adversarial training, and the bound does not
directly characterize the robust generalization gap between training and test performance.

SDP Relaxation Surrogate Loss. In (Yin et al., 2019), the authors introduced an SDP surrogate
loss to approximate the adversarial loss for two-layer neural networks. This surrogate loss is defined
as:

ˆ̀(f(x), y) = φγ

(
M(f(x), y)− ε

2
max

k∈[K],z=±1
max

P�0,diag(P )≤1
〈zQ(w2,k,W1), P 〉

)
.

Using this formulation, the adversarial Rademacher complexity can be approximated by computing
the Rademacher complexity of this surrogate loss function. However, this approach shares the same
limitations as the previously discussed method, as it still does not directly characterize the robust
generalization gap between training and test performance.

FGSM Attack Loss. Gao and Wang (2021) analyzed Rademacher complexity in the adversarial
setting by focusing on Fast Gradient Sign Method (FGSM) adversarial examples to handle the max
operation in the adversarial loss. Under specific gradient assumptions, they derived an upper bound
for the adversarial Rademacher complexity using the loss `(f(xFGSM), y). Their analysis requires
that |∇`(f(x), y)| ≥ κ holds for all x in the domain, where κ appears in the denominator of their
final bound. This assumption proves problematic for two reasons: first, it is a strong condition
that may not hold in practice, and second, the bound becomes unbounded as κ approaches zero.
Moreover, since their approach modifies the original loss function, it cannot provide guarantees on
the robust generalization gap.

B.3 Layer Peeling Technique for ARC

We first briefly introduce the layer peeling technique in standard settings.

RS(H) = Eσ
1

n

[
sup
h∈H

n∑
i=1

σih(xi)

]

= Eσ
1

n

[
sup

h′∈Hl−1,‖Wl‖≤Ml

n∑
i=1

σiWlρ(h′(xi))

]

≤ MlEσ
1

n

[
sup

h′∈Hl−1

∥∥∥∥∥
n∑
i=1

σiρ(h′(xi))

∥∥∥∥∥
]

≤ 2MlLρEσ
1

n

[
sup

h′∈Hl−1

n∑
i=1

σih
′(xi)

]
= 2MlLρRS(Hl−1).
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In adversarial settings, if we directly apply the layer peeling technique, we have

RS(H̃) = Eσ
1

n

[
sup
h∈H

n∑
i=1

σi max
‖xi−x′i‖≤ε

h(x′i)

]

= Eσ
1

n

[
sup

h′∈Hl−1,‖Wl‖≤Ml

n∑
i=1

σiWlρ(h′(x∗i (h)))

]

≤ MlEσ
1

n

[
sup

h′∈Hl−1

∥∥∥∥∥
n∑
i=1

σiρ(h′(x∗i (h)))

∥∥∥∥∥
]

≤ 2MlLρEσ
1

n

[
sup

h′∈Hl−1

n∑
i=1

σih
′(x∗i (h))

]

6= 2MlLρEσ
1

n

[
sup

h′∈Hl−1

n∑
i=1

σih
′(x∗i (h

′))

]
= 2MlLρRS(H̃l−1).

where x∗i (h) and x∗i (h
′) denote the optimal adversarial examples for l-layer and (l − 1)-layer

neural networks, respectively. Since x∗i (h) 6= x∗i (h
′) in general, the optimal adversarial examples

differ between architectures of different depths, which prevents the direct extension of layer peeling
techniques to the adversarial setting.

B.4 Comparison of Adversarial Generalization Bounds

VC-Dimension Bounds. The VC dimension is a fundamental tool in statistical learning theory
for bounding generalization gaps. Several works, including Cullina et al. (2018), Montasser et al.
(2019), and Attias et al. (2021), have extended this framework to the adversarial setting. However,
these approaches fail to provide computable bounds on the adversarial generalization gap, as we
explain below. Let H denote the hypothesis class (for example, the set of neural networks with a
fixed architecture).

Cullina et al. (2018) introduced the concept of adversarial VC dimension (AVC) and established
bounds on the adversarial generalization gap in terms of AVC(H). However, they did not provide
methods to compute the AVC for neural networks, thus leaving their bounds non-computable in
practice.

Montasser et al. (2019) took a different approach by defining an adversarial function class LUH,
where L represents the loss function and U denotes the uncertainty set. While their bound on the
adversarial generalization gap using LUH differs from the AVC(H) approach of Cullina et al. (2018),
they similarly did not provide a method to compute their bound, rendering it non-computable in
practice.

Attias et al. (2021) analyze the case where the perturbation set U(x) is finite, containing exactly k
possible adversarial examples for each sample x. Under this assumption, they bound the adversarial
generalization gap by:

O
(

1

ε2

(√
k · V C(H) log

(
3

2
+ a

)
k · V C(H)

)
+ log

1

δ

)
.
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Since VC(H) can be upper-bounded by the number of network parameters, this result provides
a computable bound, improving upon previous approaches. However, this computability comes
with a significant limitation: the bound depends on k, the number of allowed perturbed samples,
which deviates from the standard notion of adversarial generalization where U(x) is an infinite set.
In contrast, our bound applies to the original adversarial generalization framework where U(x) is
infinite (k = +∞).

Adversarial Generalization in Alternative Settings. Several studies have explored adversarial
generalization in specific model architectures. Javanmard et al. (2020) analyzed generalization
properties in linear regression, while multiple researchers (Taheri et al., 2020; Javanmard et al., 2020;
Dan et al., 2020) investigated adversarial generalization using Gaussian mixture models. Studies on
uniform stability in adversarial training (Xing et al., 2021; Xiao et al., 2022a,b,d, 2024) suggest that
poor generalization may result from the non-smooth nature of adversarial loss functions.

Certified Robustness. Research on certified robustness focuses on guaranteeing model perfor-
mance within norm-constrained neighborhoods of training data. Cohen et al. (2019) developed
certification methods through random smoothing, while Lecuyer et al. (2019) approached certifica-
tion through differential privacy frameworks.

Geometric Perspectives on Adversarial Examples. Several works have examined the geometric
properties of adversarial examples (Gilmer et al., 2018; Khoury and Hadfield-Menell, 2018). The
off-manifold hypothesis, first proposed by Szegedy et al. (2013), suggests that adversarial examples
deviate from the underlying data manifold. Supporting this view, Song et al. (2017) demonstrated
using generative models that adversarial examples typically occupy low-probability regions of the
data distribution. Similarly, Ma et al. (2018) employed Local Intrinsic Dimensionality (LID) to show
that adversarial subspaces are both low-probability and distinct from the data submanifold.

C. Additional Experiments

In this section, we present additional experimental results to further validate our theoretical findings
and explore their implications.

C.1 Experiments on VGG Architectures

Figure 3 presents experimental results for VGG-11 and VGG-13 architectures, while Figure 4
demonstrates findings for VGG-16 and VGG-19. Our analysis reveals a substantial difference in the
product of Frobenius norms between standard and adversarial training methods, which corresponds
to poor generalization performance in the adversarial setting.

‖·‖1,∞-Norm Bounds. The ‖·‖1,∞-norm bounds are shown in Figure 5. Similar the the Frobenius
norm bounds,The gap of

∏l
j=1 ‖Wj‖1,∞ between adversarial training and standard training are large.

But the magnitude of
∏l
j=1 ‖Wj‖1,∞ is larger than the magnitude of

∏l
j=1 ‖Wj‖F .

C.2 Ablation Study on Margin Distribution

Figure 6 illustrates the margin distributions at the 1st, 3rd, and 5th percentiles of the training dataset.
As the robust training accuracy reaches 100%, the choice of percentile does not significantly impact
our analysis. Across all percentiles, standard training consistently achieves larger margins compared
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Figure 3: Comparison of Frobenius norm products across VGG architectures. Results from standard
training (red lines) and adversarial training (blue lines) for VGG-11 (top row) and VGG-13 (bottom
row). The plots show: (a,e) Generalization gap, (b,f) Training set margin γ, (c,g) Product of
layer-wise Frobenius norms

∏l
j=1 ‖Wj‖F , and (d,h) Ratio of Frobenius norm product to margin∏l

j=1 ‖Wj‖F /γ.
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Figure 4: CIFAR-10 experimental results comparing standard training (red lines) and adversarial
training (blue lines) for VGG-16 (top row) and VGG-19 (bottom row). The plots show: (a,e) Gener-
alization gap, (b,f) Training set margin, (c,g) Product of layer-wise Frobenius norms

∏l
j=1 ‖Wj‖F ,

and (d,h) Ratio of Frobenius norm product to margin
∏l
j=1 ‖Wj‖F /γ.
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Figure 5: Comparison of ‖ · ‖1,∞-norm products on CIFAR-10 between standard training (red lines)
and adversarial training (blue lines) for: VGG-16 (a,b) and VGG-19 (c,d). The plots show: (a,c)
Product of layer-wise ‖ · ‖1,∞-norms

∏l
j=1 ‖Wj‖1,∞, and (b,d) Ratio of norm product to margin∏l

j=1 ‖Wj‖1,∞/γ.

to adversarial training. Since margins appear in the denominator of the Rademacher complexity
upper bound, these smaller margins in adversarial training contribute, albeit modestly, to its poorer
generalization performance.

C.3 Experiments on CIFAR-100

Performance Analysis. Table 3 presents comparative results between standard and adversarial
training on CIFAR-100 using VGG-16 and VGG-19 architectures. Our experiments reveal that the
standard CIFAR-100 training set size of 50,000 samples is insufficient to effectively train VGG
networks to acceptable performance levels. This limitation makes it challenging to analyze weight
norm trends through CIFAR-100 experiments. Nevertheless, we compare the product of weight
norms between standard and adversarial training methods to gain insights into their relative behaviors.

Product of Weight Norms. Figure 7 presents the training results for VGG-16 and VGG-19
architectures on CIFAR-100. Consistent with our CIFAR-10 experiments, adversarially trained
models exhibit significantly larger weight norms compared to their standard-trained counterparts.

Table 3: Performance comparison between standard and adversarial training on CIFAR-100 using
VGG-16 and VGG-19 architectures. Results show clean accuracy for standard training and robust
accuracy (against PGD attacks) for adversarial training.

No. of Samples 10000 20000 30000 40000 50000

VGG-16-STD 0.26 0.44 0.54 0.60 0.63
VGG-16-ADV 0.12 0.15 0.17 0.18 0.19
VGG-19-STD 0.32 0.47 0.53 0.58 0.62
VGG-19-ADV 0.12 0.16 0.17 0.19 0.21

C.4 Weight Decay

Theoretical upper bounds on adversarial Rademacher complexity suggest that adding weight reg-
ularization (weight decay) can improve generalization performance. We experimentally validate
this theoretical insight in Figure 8, comparing adversarial training with and without weight decay.
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Figure 6: Margin analysis across VGG architectures: Results from VGG-11 (first column), VGG-13
(second column), VGG-16 (third column), and VGG-19 (fourth column).
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Figure 7: CIFAR-100 experimental results comparing standard training (red lines) and adversarial
training (blue lines) for VGG-16 (top row) and VGG-19 (bottom row). The plots show: (a,e) Gener-
alization gap, (b,f) Training set margin γ, (c,g) Product of layer-wise Frobenius norms

∏l
j=1 ‖Wj‖F ,

and (d,h) Ratio of Frobenius norm product to margin
∏l
j=1 ‖Wj‖F /γ.

10000 20000 30000 40000 50000
number of samples

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Robust Generalization Gap-VGG16

with_wd
without_wd

(a)

10000 20000 30000 40000 50000
number of samples

1013

1014

1015

1016

Frobenius Norm-VGG16

with_wd
without_wd

(b)

10000 20000 30000 40000 50000
number of samples

0.58

0.60

0.62

0.64

0.66

0.68

Robust Generalization Gap-VGG19
with_wd
without_wd

(c)

10000 20000 30000 40000 50000
number of samples

1014

1015

1016

1017

1018

1019

Frobenius Norm-VGG19

with_wd
without_wd

(d)

Figure 8: Impact of weight decay on VGG architectures: Results for VGG-16 (a,b) and VGG-19
(c,d), comparing models trained with and without weight decay. The plots show: (a,c) Robust
generalization gap and (b,d) Product of layer-wise Frobenius norms.
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Figure 9: Weight decay effects on model behavior for values ranging from 1× 10−3 to 9× 10−3: (a)
Training error performance, (b) Frobenius norm of model weights, and (c) Robust generalization gap
between training and test performance.
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The results in Figures 8(a) and (c) demonstrate that incorporating weight decay reduces the robust
generalization gap. Additionally, Figures 8(b) and (d) show that adversarial training with weight
decay yields smaller weight norm products. These experimental findings establish a clear empir-
ical connection between the robust generalization gap and weight norm products, supporting our
theoretical analysis.

In Figure 9, we examine the effect of weight decay values ranging from 1× 10−3 to 9× 10−3.
The training error increases with higher weight decay values. At low weight decay (1× 10−3), the
model achieves minimal training error, indicating a high capacity to fit the training data. However, as
weight decay increases, the model’s flexibility is constrained, leading to higher training errors. This
behavior aligns with the regularization effect of weight decay, which penalizes large weights and
reduces the model’s ability to overfit. At very high weight decay values (9× 10−3), the model risks
underfitting, as excessive regularization prevents it from capturing meaningful patterns in the data.

The Frobenius norm of the model weights decreases monotonically with increasing weight decay.
This trend reflects the direct impact of weight decay on the optimization process, where larger decay
values impose stricter penalties on weight magnitudes. The reduction in the Frobenius norm indicates
a simplification of the model, which is a key objective of regularization. However, excessively small
weight magnitudes can lead to underfitting, highlighting the need for careful tuning of the weight
decay parameter.

The generalization gap, defined as the difference between training and test performance, demon-
strates a non-linear relationship with weight decay. At low weight decay values, the gap is large,
indicating poor generalization due to overfitting. As weight decay increases, the gap narrows, reach-
ing a minimum at intermediate values (e.g., 3×10−3 to 7×10−3). This reduction in the gap signifies
improved generalization, as the model achieves a better balance between fitting the training data and
maintaining performance on unseen data. At very high weight decay values, the gap may stabilize or
slightly increase, as both training and test performance degrade due to underfitting.

In conclusion, the results highlight the trade-offs associated with weight decay. Model perfor-
mance deteriorates significantly within this range. At weight decay values of 6× 10−3 and higher,
the margin becomes negative, indicating high training error. Subsequently, the weight norm to margin
ratio also becomes negative. At 9× 10−3, the model fails to learn entirely, with both training and test
errors reaching 90%. Our analysis suggests the optimal weight decay range for minimizing weight
norm lies between 1 × 10−3 and 5 × 10−3. The smallest weight norm observed was 6.01 × 1012

(with weight decay = 4× 10−3). However, this value remains larger than the weight norm achieved
through standard training (1.90× 1012). These findings emphasize the importance of selecting an
appropriate weight decay value to achieve robust model performance.
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