publications

In reversed chronological order | * denotes equal contribution

2024

  1. arXiv
    On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization
    Jiancong Xiao, Ziniu Li, Xingyu Xie, Emily Getzen, Cong Fang, Qi Long, and Weijie J. Su
    submitted to Journal of the American Statistical Association (JASA), Major Revision , 2024
  2. arXiv
    Entropic Distribution Matching in Supervised Fine-tuning of LLMs: Less Overfitting and Better Diversity
    Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo
    2024
  3. COLT 2024
    Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization
    Jiancong Xiao, Ruoyu Sun, Qi Long, and Weijie J. Su
    In Conference on Learning Theory, 2024
  4. ICML 2024
    Uniformly Stable Algorithms for Adversarial Training and Beyond
    Jiancong Xiao*, Jiawei Zhang*, Zhi-Quan Luo, and Asuman E. Ozdaglar
    In International Conference on Machine Learning, 2024
  5. arXiv
    Fine-Tuning Linear Layers Only Is a Simple yet Effective Way for Task Arithmetic
    Ruochen Jin, Bojian Hou, Jiancong Xiao, Weijie J. Su, and Li Shen
    submitted, under review , 2024

2023

  1. NeurIPS 2023
    PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust Generalization
    Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo
    In Advances in Neural Information Processing Systems, 2023
  2. AdvML 2023
    Improving Adversarial Training for Multiple Perturbations through the Lens of Uniform Stability
    Jiancong Xiao, Zeyu Qin, Yanbo Fan, Baoyuan Wu, Jue Wang, and Zhi-Quan Luo
    In ICML Workshop on New Frontiers in Adversarial Machine Learning, 2023
  3. AdvML 2023
    PAC-Bayesian Adversarially Robust Generalization Bounds for Deep Neural Networks
    Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo
    In ICML Workshop on New Frontiers in Adversarial Machine Learning, 2023
  4. Ph.D. Thesis
    Understanding Adversarially Robust Generalization: A Learning Theory Perspective
    Jiancong Xiao
    The Chinese University of Hong Kong, Shenzhen, 2023

2022

  1. MLSW 2022
    Smoothed-SGDmax: A Stability-Inspired Algorithm to Improve Adversarial Generalization
    Jiancong Xiao*, Jiawei Zhang*, Zhi-Quan Luo, and Asuman E. Ozdaglar
    In NeurIPS ML Safety Workshop, 2022
  2. NeurIPS 2022 Spotlight
    Stability Analysis and Generalization Bounds of Adversarial Training
    Jiancong Xiao, Yanbo Fan, Ruoyu Sun, Jue Wang, and Zhi-Quan Luo
    In Advances in Neural Information Processing Systems, 2022
  3. arXiv
    Adversrial Rademacher Complexity of Deep Neural Networks
    Jiancong Xiao, Yanbo Fan, Ruoyu Sun, and Zhi-Quan Luo
    submitted to Journal of Machine Learning Research (JMLR), Major Revision , 2022
  4. Pattern Recognition
    Understanding Adversarial Robustness Against On-manifold Adversarial Examples
    Jiancong Xiao, Liusha Yang, Yanbo Fan, Jue Wang, and Zhi-Quan Luo
    Pattern Recognition, 2022